An extension of a Bourgain–Lindenstrauss–Milman inequality

نویسندگان

  • Omer Friedland
  • Sasha Sodin
چکیده

Let ‖ · ‖ be a norm on Rn. Averaging ‖(ε1x1, · · · , εnxn)‖ over all the 2n choices of −→ε = (ε1, · · · , εn) ∈ {−1,+1}n, we obtain an expression ‖|x‖| which is an unconditional norm on Rn. Bourgain, Lindenstrauss and Milman [3] showed that, for a certain (large) constant η > 1, one may average over ηn (random) choices of −→ ε and obtain a norm that is isomorphic to ‖| · ‖|. We show that this is the case for any η > 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Talagrand’s deviation inequality for Rademacher functions

where σ is the Lipschitz constant of the extension of f and P is the natural probability on {0, 1}. Here we extend this inequality to more general product probability spaces; in particular, we prove the same inequality for {0, 1} with the product measure ((1− η)δ0 + ηδ1) . We believe this should be useful in proofs involving random selections. As an illustration of possible applications we give...

متن کامل

Embedding Levy Families into Banach Spaces

We prove that if a metric probability space with a usual concentration property embeds into a finite dimensional Banach space X , then X has a Euclidean subspace of a proportional dimension. In particular this yields a new characterization of weak cotype 2. We also find optimal lower estimates on embeddings of metric spaces with concentration properties into l ∞, generalizing estimates of Bourg...

متن کامل

Dedicated to the Memory of Jose Luis Rubio De Francia

In this paperwe prove that the /~.,-cube can be (1 + s)-embedded into any 1 -subsyntmetrie C(s>n.dimensional normed space. Marcus and Pisier in [5]iniciated tite study of tite geometry ob finite metric spaces. Bourgain, Milman and Wolbson introduced a new notion of metnc type and developed tite non-linear titeory of Banacit spaces (see [2]and [7]). AII titese themes have been studied more inten...

متن کامل

SUM - PRODUCT PHENOMENA IN F p : A BRIEF INTRODUCTION

These notes arose from my Cambridge Part III course on Additive Combinatorics, given in Lent Term 2009. The aim was to understand the simplest proof of the Bourgain-Glibichuk-Konyagin bounds for exponential sums over subgroups. As a byproduct one obtains a clean proof of the Bourgain-Katz-Tao theorem on the sumproduct phenomenon in Fp. The arguments are essentially extracted from Bourgain’s pap...

متن کامل

Toward a Unified Theory of Sparse Dimensionality Reduction in Euclidean Space Jean Bourgain and Jelani Nelson

Let Φ ∈ Rm×n be a sparse Johnson-Lindenstrauss transform [KN] with s non-zeroes per column. For T a subset of the unit sphere, ε ∈ (0, 1/2) given, we study settings for m, s required to ensure E Φ sup x∈T ∣∣‖Φx‖22 − 1∣∣ < ε, i.e. so that Φ preserves the norm of every x ∈ T simultaneously and multiplicatively up to 1 + ε. In particular, our most general theorem shows that it suffices to set m = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008